Wednesday, February 15, 2012

Turbine

Introduction

Whe­n you go to an airport and see the commercial jets there, you can't help but notice the huge ­engines that power them. Most commercial jets are powered by turbofan engines, and turbofans are one example of a general class of engines called gas turbine engines.
You may have never heard of gas turbine engines, but they are used in all kinds of un­expected places. For example, many of the helicopters you see, a lot of s­maller power plants and even the M-1 Tank use gas turbines.

Type of Turbine
There are many different kinds of turbines:
  • You have probably heard of a steam turbine. Most power plants use coal, natural gas, oil or a nuclear reactor to create steam. The steam runs through a huge and very carefully designed multi-stage turbine to spin an output shaft that drives the plant's generator.
  • Hydroelectric dams use water turbines in the same way to generate power. The turbines used in a hydroelectric plant look completely different from a steam turbine because water is so much denser (and slower moving) than steam, but it is the same principle.
  • Wind turbines, also known as wind mills, use the wind as their motive force. A wind turbine looks nothing like a steam turbine or a water turbine because wind is slow moving and very light, but again, the principle is the same.
A gas turbine is an extension of the same concept. In a gas turbine, a pressurized gas spins the turbine. In all modern gas turbine engines, the engine produces its own pressurized gas, and it does this by burning something like propane, natural gas, kerosene or jet fuel. The heat that comes from burning the fuel expands air, and the high-speed rush of this hot air spins the turbine.


The Gas Turbine Process
Gas turbine engines are, theoretically, extremely simple. They have three parts:
  • Compressor - Compresses the incoming air to high pressure
  • Combustion area - Burns the fuel and produces high-pressure, high-velocity gas
  • Turbine - Extracts the energy from the high-pressure, high-velocity gas flowing from the combustion chamber
The following figure shows the general layout of an axial-flow gas turbine -- the sort of engine you would find driving the rotor of a helicopter, for example:
In this engine, air is sucked in from the right by the compressor. The compressor is basically a cone-shaped cylinder with small fan blades attached in rows (eight rows of blades are represented here). Assuming the light blue represents air at normal air pressure, then as the air is forced through the compression stage its pressure rises significantly. In some engines, the pressure of the air can rise by a factor of 30. The high-pressure air produced by the compressor is shown in dark blue.

Combustion Area
This high-pressure air then enters the combustion area, where a ring of fuel injectors injects a steady stream of fuel. The fuel is generally kerosene, jet fuel, propane or n­atural gas. If you think about how easy it is to blow a candle out, then you can see the design problem in the combustion area -- entering this area is high-pressure air moving at hundreds of miles per hour. You want to keep a flame burning continuously in that environment. The piece that solves this problem is called a "flame holder," or sometimes a "can." Thecan is a hollow, perforated piece of heavy metal. Half of the can in cross-section is shown below:
The injectors are at the right. Compressed air enters through the perforations. Exhaust gases exit at the left. You can see in the previous figure that a second set of cylinders wraps around the inside and the outside of this perforated can, guiding the compressed intake air into the perforations.

The Turbine
At the left of the engine is the turbine section. In this figure there are two sets of turbines. The first set directly drives the compressor. The turbines, the shaft and the compressor all turn as a single unit:
At the far left is a final turbine stage, shown here with a single set of vanes. It drives the output shaft. This final turbine stage and the output shaft are a completely stand-alone, freewheeling unit. They spin freely without any connection to the rest of the engine. And that is the amazing part about a gas turbine engine -- there is enough energy in the hot gases blowing through the blades of that final output turbine to generate 1,500 horsepower and drive a 63-ton M-1 Tank! A gas turbine engine really is that simple.
In the case of the turbine used in a tank or a power plant, there really is nothing to do with the exhaust gases but vent them through an exhaust pipe, as shown. Sometimes the exhaust will run through some sort of heat exchanger either to extract the heat for some other purpose or to preheat air before it enters the combustion chamber.
The discussion here is obviously simplified a bit. For example, we have not discussed the areas of bearings, oiling systems, internal support structures of the engine, stator vanes and so on. All of these areas become major engineering problems because of the tremendous temperatures, pressures and spin rates inside the engine. But the basic principles described here govern all gas turbine engines and help you to understand the basic layout and operation of the engine.



No comments:

Post a Comment